
How Does library Migration Impact Software
Quality and Comprehension? An Empirical Study

Hussein Alrubaye1 ID (�), Deema Alshoaibi1 ID , Eman Alomar1 ID , Mohamed
Wiem Mkaouer1 ID , and Ali Ouni2 ID

1 Rochester Institute of Technology, Rochester, New York, United States
{hat6622, da3352, eaa6167, mwmvse}@rit.edu

2 Ecole de Technologie Superieure, University of Quebec, QC, Canada
ali.ouni@etsmtl.ca

Abstract. The process of migration between different third-party software
libraries, while being an typical library reuse practice, is complex, time
consuming and error-prone. Typically, during a library migration process,
developers opt to replace methods from a retired library with other meth-
ods from a new library without altering the software behavior. However,
the extent to which the process of migrating to new libraries will be re-
warded with improved software quality is still unknown. In this paper, our
goal is to study the impact of library API migration on software quality.
We conducted a large-scale empirical study on 9 popular API migrations,
collected from a corpus of 57,447 open-source Java projects. We computed
the values of commonly-used software quality metrics before and after a
migration occurs. The statistical analysis of the obtained results provides
evidence that library migrations are likely to improve different software
quality attributes including significantly reduced coupling, increased cohe-
sion, and improved code readability. Furthermore, we released an online por-
tal that helps software developers to understand the impact of a library
migration on software quality and recommend migration examples that
adopt best design and implementation practices to improve software qual-
ity. Finally, we provide the software engineering community with a large
scale dataset to foster research in software library migration.

Keywords: API Migration · Software Quality · Code Comprehension

1 Introduction

Software maintenance activities consume up to 70% of the total life-cycle cost
of a typical software product [10]. To cope with the expense software evolution,
software reuse, through third-party libraries and APIs, has become the back-
bone of modern software development. However, just like any traditional code,
libraries and APIs undergo maintenance and evolution. In order to keep most
up to date libraries, developers need to periodically perform third-party library
migration [25,26,7,4]. In practice, library migration can be seen as the process

https://orcid.org/0000-0002-1662-3224
https://orcid.org/0000-0001-5424-6901
https://orcid.org/0000-0003-1800-9268
https://orcid.org/0000-0001-6010-7561
https://orcid.org/0000-0003-4708-0362

2 Alrubaye et al.

of replacing a library with a different one, while preserving the same program
behavior. The library migration process tends to be a manual, error-prone, and
time-consuming process [27,4,15,8]. Hence, developers have to explore and un-
derstand the new library’s API, its associated documentation, and its usage sce-
narios in order to find the right API method(s) to replace in the current imple-
mentation belonging to the retired library’s API. As a consequence, developers
often spend considerable time to verify that the newly adopted features do not
introduce any regression. Indeed, previous studies have shown that developers
typically spend up to 42 days to migrate between libraries [7]. In the same con-
text, another study shows how the task of library migration is typically given
to developers with relatively higher years of coding experience, to reduce the
possibility of introducing any regression [5].

Unlike library upgrades, library migrations typically require more fine-grained
code changes and refactorings, e.g., changing types of variables and parameters,
renaming attributes and methods, etc, since developers need to accommodate
the syntactic and semantic mismatch between the added and removed methods
[25]. These refactoring changes may account for the overhead needed to fulfill
the migration and adjust the existing software design to the newly introduced
methods. Typically, API migrations introduce a set of methods and objects with
different lexical and naming conventions, which have to be integrated into the
existing codebase terminology. That is, developers may refactor their code along
with the migration to contextualize the new library methods. These unintended
refactoring operations have an impact on software design metrics (e.g., cohesion,
coupling, etc.) [12] besides the changes in terminology and renaming activities
that affect code readability as well [11,21].

Various studies have focused on analyzing the impact of API evolution on
software quality in terms of change and bug-proneness [17], software usability
and rating [16]. Other studies focused on estimating the impact of API docu-
mentation on the library adoption and usability which has been investigated in
the literature [13]. Moreover, recent studies attempted to identify traces of man-
ually performed library migrations. They provide the community with a set of
real-world migrations between popular Java libraries, in various open source
projects [26,27,7].

Existing studies reveal the importance of taking into account the software
design characteristics when performing the migration to reduce maintenance
costs. However, there is little knowledge on the impact of API migration, and its
related refactoring changes, on the quality of software’s design as well as code
comprehension and readability. Indeed, as software systems evolve rapidly, there
is a need for appropriate tools, reliable, and efficient techniques to support de-
velopers in replacing their deprecated library APIs with up-to-date ones, and
maintaining/improving the quality of their software design.

To address the above-mentioned issues, we conducted a large-scale empiri-
cal study to assess the impact of library migration on both software design qual-
ity and code comprehension. We considered an existing dataset of 9 popular mi-
grations between Java libraries, mined from 57,447 open-source Java projects [7].

Impact of API migration on software quality and comprehension 3

Afterward, we shortlisted all commits containing traces of method swaps, as
part of migrations under the study. We refined our dataset by untangling each
commit to identify the specific code elements involved in the migration using
program analysis. Then, for the selected code elements, we calculated the val-
ues of their corresponding design and readability metrics, before and after the
migration. Finally, we statistically compared the variation of these values, to an-
alyze whether the migration had a significant, positive, or negative impact on
design quality and readability. We finally associated a ranking score, to each mi-
gration trace, according to the extent to which it was able to improve the design
and readability of the existing code. We survey 10 senior developers to assess the
usefulness of the ranking score in providing relevant migration code examples.

Our study is driven by the following research questions:

RQ1. (Design Improvement) What is the impact of library migration on
the quality of software design?
To answer this research question, we assess the impact of library migration on
software design quality in terms of complexity, coupling and cohesion, widely
popular structural metrics [23]. For each analyzed source file in the dataset (that
we detail later in the next subsection), we measured the value of its coupling
and cohesion before and after the migration. As we aggregated all values before
and after the migration, we observed the variation in the aggregated values to
investigate whether the migration had a positive or negative impact on design
quality.

RQ2. (Code Readability) Does migration improve the code readability?
Similarly to RQ1, we consider popular state-of-the-art readability tools and met-
rics [11,22]. For each metric, we measure its pair values in the dataset files, be-
fore and after the migration, and then we analyze the values for statistical sig-
nificance.

RQ3. (Quality Recommendation) Canwe leverage design and readability
metrics to recommend better code examples for migration?
Since there are multiple code fragments, belonging to various projects and con-
taining the same mappings, we design a recommendation-based ranking method
that aggregates various quality metrics. Our method ranks the collected code
fragments based on the extent to which they preserve the design coherence and
improve the code comprehension. We then perform a qualitative study with
10 senior developers to evaluate the usefulness of our recommendation-based
ranking method.

The paper’s key findings show a positive variation of structural and read-
ability metrics, i.e., developers do pay attention to design and readability when
performing the migration process. Moreover, results show that code fragments
with higher ranking score were also voted by the majority of developers, as good
examples of migrations. This study makes the following contributions:

4 Alrubaye et al.

1. We release an online portal3 that showcases real-world migration fragments,
with their corresponding positive or negative impact on coupling, cohesion,
and readability.

2. We propose a ranking score, that we label Migration Quality Score(MQS),
which ensures better API reuse by recommending migration examples that
ensure better software quality and comprehension.

3. We survey with senior software engineers at an outstanding company to
evaluate MQS's ability to recommend high-quality migration examples for 9
popular migrations. Findings show that MQS e�ectively recommends high-
quality migration examples that facilitates API reusability.

2 Background and Terminology

2.1 Library migration

When a software development team made the decision of replacing the cur-
rent libraries used by the software, they have to specify the migration rules .
A migration rule is denoted by a pair of a source(retired) library and a target
(replacing) library, i.e., source! target. For example, easymock! mockitorep-
resent a migration rule where the library easymock is migrated to the new li-
brary mockito. Migration rules are not enough to start the migration process.
Developers should de�ne the mappings between methods. Method mapping
is the process of replacing at least one method from the source library by one or
multiple methods belonging to the target library.

Fig. 1: Sample of migration between jsonand gson.

2.2 Migration Example

We showcase, in Figure 1, a real-world example of a method-level migration
as part of replacing the jsonlibrary with the gsonlibrary 4. The method put(key,
value)has been replaced with two methods, namely addProperty(key, value), and

3 http://migrationlab.net/index.php?cf=icsr2020
4 http://migrationlab.net/redirect.php?cf=icpc2019&p=1

http://easymock.org
https://site.mockito.org
http://migrationlab.net/index.php?cf=icsr2020
http://migrationlab.net/redirect.php?cf=icpc2019&p=1

Impact of API migration on software quality and comprehension 5

Gson().toJson(value). To have valid input for addPropertymethod, the Map ob-
ject needs to be converted into a jsonobject, so another converting method was
added. We call this type of change as Migration fragmentwhere a block of code
changes has methods from removed/added libraries.

2.3 Software Quality Attributes

Object oriented (OO) software quality attributes re
ects the quality change
of a refactoring operation. The wide used attributes for software structure de-
sign and size are coupling, cohesion and complexity. Coupling measures the
level of relationship between modules [24]. While designing the software, low
coupling is desirable (i.e., less dependency between modules). Coupling Be-
tween Objects (CBO) is a metric for measuring coupling between code objects.
The higher the CBO, the higher the class coupling. Cohesion measures the level
of relationship within module [18]. While designing the software, high cohe-
sion is desirable (i.e., strong interaction between code elements in a module)
since this target helps in fostering code maintainability. Cohesion of Methods
(LCOM) metric is used to assess the cohesion of classes. Normalized LCOM
metric has been widely recognized in the literature [19] as being the alternative
to the original LCOM, as the latter addresses its main limitations (mispercep-
tion of getters and setters, etc.). The lower the LCOM, the higher the class co-
hesion. Complexity of software indicates e�ort and time required to maintain
the software. Complex software costs more during maintenance and refactor-
ing. Five complexity and volume metrics are used to compute this quality at-
tribute, namely, the Cyclomatic Complexity (CycC), the Line of Code (LOC),
the Line with Comments (CLOC), the Ratio of Comment Lines to Code Lines,
and the Number of Blank Lines. Normally, higher values of these metrics indi-
cate a higher value of class complexity [12].
Code readability (CR) impacts further code changes conducted by di�erent
team members than the original developer or even for the same developer but
after a while. Source code readability is one of the important aspects of soft-
ware engineering. Line length and number of comments are the basic readabil-
ity metrics obtained from code static analysis. Buse and Weimer [11] derived a
relationship between code metrics and human readability notation. Scalabrino
et al. [22] extracted code textual features from source code lexicon analysis. The
validity and usability of those readability metrics were tested by humans and
show high correlation between human conception of code readability and met-
rics values.

3 Empirical Study Setup

3.1 Data Collection

Figure 2 provides an overview of our study work
ow. To measure the im-
pact of library migration on software quality attributes, we need to analysis the

	How Does library Migration Impact Software Quality and Comprehension? An Empirical Study
	Introduction
	Background and Terminology
	Library migration
	Migration Example
	Software Quality Attributes

	Empirical Study Setup
	Data Collection
	Metrics Measurement
	Ranking Model

	Results
	RQ1. (Design Improvement) What is the impact of library migration on the quality of software design?
	RQ2. (Code Readability) Does migration improve the code readability?
	RQ3. (Quality Recommendation) Can we leverage design and readability metrics to recommend better code examples of migration?

	Threats to validity
	Conclusion and Future Work

